Order through entropy.
نویسنده
چکیده
References 1. Lehn, J-M. Angew. Chem. Int. Ed. 52, 2836–2850 (2013). 2. Cartwright, J. H. E. & Mackay, A. L. Phil. Trans. R. Soc. A 370, 2807–2822 (2012). 3. Whitesides, G. M. & Grzybowski, B. Science 295, 2418–2421 (2002). 4. Soloveichik, D. & Winfree, E. SIAM J. Comput. 36, 1544–1569 (2007). 5. Ozin, G. A., Arsenault, A. & Cademartiri, L. Nanochemistry: A Chemical Approach to Nanomaterials 2nd edn (Royal Society of Chemistry, 2008). 6. Cademartiri, L. & Ozin, G. A. Concepts of Nanochemistry (Wiley, 2009). 7. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Small 5, 1600–1630 (2009). 8. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzan, L. M. ACS Nano 4, 3591–3605 (2010). 9. Min, Y. J., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. Nature Mater. 7, 527–538 (2008). 10. Biancaniello, P., Kim, A. & Crocker, J. Phys. Rev. Lett. 94, 58302 (2005). 11. Jones, M. R. et al. Nature Mater. 9, 913–917 (2010). 12. Macfarlane, R. J. et al. Science 334, 204–208 (2011). 13. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. Nature 451, 549–552 (2008). 14. Park, S. Y. et al. Nature 451, 553–556 (2008). 15. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Nature 439, 55–59 (2006). 16. Leunissen, M. E. et al. Nature 437, 235–240 (2005). 17. Feng, L., Dreyfus, R., Sha, R. J., Seeman, N. C. & Chaikin, P. M. Adv. Mater. 25, 2779–2783 (2013). 18. Yan, W. et al. J. Am. Chem. Soc. 134, 15114–15121 (2012). 19. Wang, Y. et al. Nature 491, 51–55 (2012). 20. Chen, Q. et al. Science 331, 199–202 (2011). 21. Nie, Z. H. et al. Nature Mater. 6, 609–614 (2007). 22. Liu, K. et al. Science 329, 197–200 (2010). 23. Vutukuri, H. R. et al. Angew. Chem. Int. Ed. 51, 11249–11253 (2012). 24. Ke, Y., Ong, L., Shih, W. & Yin, P. Science 338, 1177–1183 (2012). 25. Pinheiro, A., Han, D., Shih, W. & Yan, H. Nature Nanotech. 6, 763–772 (2011). 26. Wu, K-T. et al. Proc. Natl Acad Sci. USA 109, 18731–18736 (2012). 27. Mandelkern, M., Elias, J. G., Eden, D. & Crothers, D. M. J. Mol. Biol. 152, 153–161 (1981). 28. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. Nature 382, 607–609 (1996). 29. Alivisatos, A. et al. Nature 382, 609–611 (1996). 30. Xu, L. et al. J. Am. Chem. Soc. 134, 1699–1709 (2012). 31. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Nature 464, 575–578 (2010). 32. Sacanna, S. et al. Nature Commun. 4, 1688 (2013). 33. Glotzer, S. C. & Solomon, M. J. Nature Mater. 6, 557–562 (2007). 34. van Anders, G., Ahmed, N. K., Smith, R., Engel, M. & Glotzer, S. C. ACS Nano 8, 931–940 (2014). 35. Damasceno, P. F., Engel, M. & Glotzer, S. C. Science 337, 453–457 (2012). 36. Miszta, K. et al. Nature Mater. 10, 872–876 (2011). 37. Ou, F. S., Shaijumon, M. M. & Ajayan, P. M. Nano Lett. 8, 1853–1857 (2008). 38. Chen, Q., Bae, S. C. & Granick, S. Nature 469, 381–384 (2011). 39. Pawar, A. B. & Kretzschmar, I. Macromol. Rapid Commun. 31, 150–168 (2010). 40. Dreyfus, R. et al. Phys. Rev. E 81, 041404 (2010). 41. Knorowski, C., Burleigh, S. & Travesset, A. Phys. Rev. Lett. 106, 215501 (2011). 42. Reinhardt, A. & Frenkel, D. Phys. Rev. Lett. 112, 238103 (2014). 43. Dill, K. A. & MacCallum, J. L. Science 338, 1042–1046 (2012). 44. Cheung, K. C., Demaine, E. D., Bachrach, J. R. & Griffith, S. IEEE Trans. Robot. 27, 718–729 (2011). 45. Tang, Z., Kotov, N. A. & Giersig, M. Science 297, 237–240 (2002). 46. Cölfen, H. & Antonietti, M. Mesocrystals and Nonclassical Crystallization (Wiley, 2008). 47. Cademartiri, L., Guerin, G., Bishop, K. J. M., Winnik, M. A. & Ozin, G. A. J. Am. Chem. Soc. 134, 9327–9334 (2012). 48. Xu, J. et al. J. Am. Chem. Soc. 132, 11920–11922 (2010). 49. Wang, Y. et al. J. Am. Chem. Soc. 133, 20060–20063 (2011). 50. Wang, P. P., Yang, Y., Zhuang, J. & Wang, X. J. Am. Chem. Soc. 135, 6834–6837 (2013). 51. Wang, L. et al. Nature Commun. 4, 2413 (2013). 52. Mirkovic, T. et al. Nature Nanotech. 2, 565–569 (2007). 53. Qin, L. D., Park, S., Huang, L. & Mirkin, C. A. Science 309, 113–115 (2005). 54. DeVries, G. A. et al. Science 315, 358–361 (2007). 55. Shaw, S. & Cademartiri, L. Adv. Mater. 25, 4829–4844 (2013). 56. Perro, A. et al. Chem. Commun. 44, 5542–5543 (2005). 57. Xu, J. & Attinger, D. J. Micromech. Microeng. 18, 065020 (2008). 58. Li, D. & Xia, Y. N. Adv. Mater. 16, 1151–1170 (2004). 59. Niu, J., Hili, R. & Liu, D. R. Nature Chem. 5, 282–292 (2013). 60. Englander, S. W., Mayne, L. & Krishna, M. M. G. Q. Rev. Biophys. 40, 287–326 (2007). 61. Lindorff-Larsen, K., Piana, S., Dror, R. O. & Shaw, D. E. Science 334, 517–520 (2011). 62. Fleishman, S. J. et al. Science 332, 816–821 (2011). 63. Martinek, T. A. & Fulop, F. Chem. Soc. Rev. 41, 687–702 (2012). 64. Sierou, A. & Brady, J. F. J. Fluid Mech. 448, 115–146 (2001). 65. Schulman, R. & Winfree, E. Proc. Natl Acad Sci. USA 104, 15236–15241 (2007). 66. Winfree, E. Algorithmic Self-assembly of DNA PhD thesis, California Inst. Technol. (1998). 67. Lee, H-Y. et al. ACS Nano 8, 9979–9987(2014). 68. Rothemund, P. W. K. Nature 440, 297–302 (2006). 69. Warren, S. C., Guney-Altay, O. & Grzybowski, B. A. J. Phys. Chem. Lett. 3, 2103–2111 (2012). 70. He, X. M. et al. Nature 487, 214–218 (2012). 71. Smoukov, S. K., Gangwal, S., Marquez, M. & Velev, O. D. Soft Matter 5, 1285–1292 (2009). 72. Eigler, D. M. & Schweizer, E. K. Nature 344, 524–526 (1990). 73. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Science 294, 1684–1688 (2001). 74. Tretiakov, K. V., Bishop, K. J. M. & Grzybowski, B. A. Soft Matter 5, 1279–1284 (2009). 75. Henzie, J., Grunwald, M., Widmer-Cooper, A., Geissler, P. L. & Yang, P. D. Nature Mater. 11, 131–137 (2012). 76. Nicewarner-Pena, S. R. et al. Science 294, 137–141 (2001). 77. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Nature 415, 617–620 (2002).
منابع مشابه
Some Results Based on Entropy Properties of Progressive Type-II Censored Data
In many life-testing and reliability studies, the experimenter might not always obtain complete information on failure times for all experimental units. One of the most common censoring schemes is progressive type-II censoring. The aim of this paper is characterizing the parent distributions based on Shannon entropy of progressive type-II censored order statistics. It is shown that the equality...
متن کاملOn the Monotone Behavior of Time Dependent Entropy of Order alpha
In this paper we study some monotone behavior of the residual (past) entropy of order . We prove that, under some relation between the hazard rates (reversed hazard rates) of two distributions functions F and G, when the residual (past) entropy of order of F is decreasing (increasing) then the residual (past) entropy of G is decreasing (increasing). Using this, several conclusions regarding mo...
متن کاملShannon entropy in generalized order statistics from Pareto-type distributions
In this paper, we derive the exact analytical expressions for the Shannon entropy of generalized orderstatistics from Pareto-type and related distributions.
متن کاملEntropy generation analysis of MHD forced convective flow through a horizontal porous channel
Entropy generation due to viscous incompressible MHD forced convective dissipative fluid flow through a horizontal channel of finite depth in the existence of an inclined magnetic field and heat source effect has been examined. The governing non-linear partial differential equations for momentum, energy and entropy generation are derived and solved by using the analytical method. In addition; t...
متن کاملSHANNON ENTROPY IN ORDER STATISTICS AND THEIR CONCOMITANS FROM BIVARIATE NORMAL DISTRIBUTION
In this paper, we derive rst some results on the Shannon entropyin order statistics and their concomitants arising from a sequence of f(Xi; Yi): i = 1; 2; :::g independent and identically distributed (iid) random variablesfrom the bivariate normal distribution and extend our results to a collectionC(X; Y ) = f(Xr1:n; Y[r1:n]); (Xr2:n; Y[r2:n]); :::; (Xrk:n; Y[rk:n])g of order sta-tistics and th...
متن کاملEntropy Generation Analysis of EG – Al2O3 Nanofluid Flows through a Helical Pipe
fluids for various industrial applications because of their excellent thermal performance. This study analytically and experimentally examines the effects of nanoparticle dispersion on the entropy generation of EG–Al2O3 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature materials
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2015